An Introduction to High Frequency Surface Wave Radar

Dr. Hugh Roarty Dr. Scott Glenn

Presented by: Trevor Bartleet (Peralex Electronics)

RUTGERS

Coastal Ocean Observation Lab

AOC Aardvark Roost
12th Little Crow Conference
11 May 2015

IMT, Simon's Town

UNIVERSITY OF CAPE TOWN

IYUNIVESITHI YASEKAPA • UNIVERSITEIT VAN KAAPSTAD

The Radar Masters Course at UCT

http://radarmasters.co.za/

- Set up to address the growing need for skilled engineers and scientists in the challenging fields of Radar and Electronic Defence.
- The programmes are flexible, so a working engineer can pursue the degree over a two or three year period.
- Students focus on relevant theory, technologies and applications of radar and ED/EW, with coursework and project components.
- Programme had first intake of students in February 2011

Subjects

- Core subjects include:
 - Mathematics for Radar and EW
 - Introduction to Radar
 - Introduction to EW
 - Radar Signal Processing
 - Radar Systems Modelling
 - Microwave Components & Antennas
 - Microwave Filters Design
 - Applications of Imaging Radar
- Specialised subjects
 - HF Surface Wave Radar

The Challenger Glider Mission: A New Generation of Student Based Discovery

"The Ocean is Our Classroom"

HISTORY OF HIGH FREQUENCY RADAR

HF Radar -- Is It New Technology?

- British 25-MHz "Chain Home" built 1938 to detect German bombers
 - "Bragg" sea echo from English Channel mistakenly labeled "jammer"
 - These systems preceded microwave radars by several years

Crombie (1955)

Dominion Physical Laboratory, Lower Hutt, New Zealand.

Letters to Nature 175, 681 - 682 (16 April 1955)

No. 4459 April 16, 1955

NATURE

681

Fig. 2

Doppler Spectrum of Sea Echo at 13.56 Mc./s.

HOW HIGH FREQUENCY RADAR WORKS

Horizon Calculation

FIGURE 1.3 Nominal ground range coverage limitation of a line-of-sight radar system due to the Earth's curvature as a function of antenna height and target altitude.

Ocean Ocean

Speed of Light

- •Speed of Light, c = 299,792,458 m/s
- c=fλ
- •Approximation is $300/f_{MHz} = Radio$ Wavelength (m)

Radio Frequency (MHz)	Radio Wave- length (m)	Ocean Wave- length (m)	Effective range (km)
5	60	30	180
13	23	12	80
25	12	6	30
42	7	4	

λ/2 | λ/2 | | |

λ/2 | λ/2 |

SeaSonde Principles

λ/2

NZ | NZ |

Freq λ/2 λ mhz seconds meters meters Bragg Sea Echo 5 30.0 60 4.4 13 23 11.5 2.7 12 6.0 2.0 25 42 3.6 1.5 В C Α

λ/2 Freq mhz meters meters seconds Bragg Sea Echo 5 30.0 60 4.4 13 23 11.5 2.7 12 6.0 2.0 25 42 3.6 1.5 В C Α SeaSonde Principles

Doppler Spectrum

Radial Currents

The Doppler Spectrum

Physical Mechanism Behind Current Mapping from First-Order Doppler Sea-Echo Spectral Peaks

What does an HF RADAR consist of?

Direction Finding

	Amplitude s		Phases	
	A1/A3	A2/A3	P1- P3	P2- P3
0	0.707	0.707	0	0
15	0.866	0.5	0	0
45	1	0	0	0
75	0.866	0.5	0	180
90	0.707	0.707	0	180
120	0.259	0.966	0	180
180	0.707	0.707	180	180

Direction Finding

	Amplitude s		Phases	
	A1/A3	A2/A3	P1- P3	P2- P3
0	0.707	0.707	0	0
15	0.866	0.5	0	0
45	1	0	0	0
75	0.866	0.5	0	180
90	0.707	0.707	0	180
120	0.259	0.966	0	180
180	0.707	0.707	180	180

SeaSonde Waveform

Frequency

Baseband Difference Frequency Between Transmit and Target Signals

Radial Vector Output of MUSIC Processing

Output of MUSIC processing: radial vectors

Vectors are in polar coordinate system centered at receive antenna

1 radial map per averaged cross spectra file into one hourly map

APPLICATION: OCEANOGRAPHY, SEARCH AND RESCUE, OIL SPILLS

Surface Current Mapping Capability

25 MHz

Radar λ : 12 m Ocean λ : 6 m

Range: 30 km Resolution: 1 km

13 MHz

Radar λ : 23 m Ocean λ : 12 m

Range: 80 km Resolution: 3 km

05 MHz

Radar λ : 60m Ocean λ : 30 m

Range: 180 km Resolution: 6 km

MARACOOS HF RADAR NETWORK

	5 MHz	13 MHz	25 MHz
U Mass			
WHOI			
U Conn			
URI			
Stevens			
Rutgers			
Delaware			
ODU/CIT			
UNC			
9	17	8	17

41 Stations in Total

RUTGERS

Transition Objective –

Operational Use of HF Radar Surface Currents for Search And Rescue

SAROPS Test Case

5000 Virtual Drifters + 1 Real Drifter (Black Line): Search Area After 96 Hours

HyCOM

36,000 km²

HF Radar

12,000 km²

Deepwater Horizon Oil Spill: Coordinated Rapid Response

Contributed Assets:

HF Radar Networks USF, USM **Gliders**

> iRobot, Mote, Rutgers, SIO, UDel, USF, Navy

Drifters & Profilers Horizon Marine, Navy

Satellite Imagery CSTARS, UDel, Rutgers

Ocean Forecasts Navy, NCSU

Data/Web Services ASA, Rutgers, SIO

USM HFR validation of SABGOM Forecast in region with satellite detected oil slicks

by NOAA/NOS/OR&R

APPLICATION: MARITIME DOMAIN AWARENESS AND VESSEL DETECTION

Doppler Spectra from all Range Cells with Detection Threshold above Background Applied

Ships in Spectra

Ships in Spectra

The Center for Secure and Resilient Maritime Commerce (CSR)

UNIVERSITY OF MIAMI

MONMOUTH UNIVERSITY

MG

Rutgers University -

Scott Glenn, Josh Kohut, Hugh Roarty,

CODAR Ocean Sensors -

University or Puerto Rico – Mayaguez

Jorge Corredor, Julio Morell, Miguel Canals

Applied Mathematics, Inc -Bill Browning

Debbie Montagna, Bruce Downie

Naval Research Laboratory

Norwegian Defence Research Establishment (FFI)

Terje Johnsen, Walther Asen

CODARNor

Anton Kjelaas

HF Radar Team

Mike Crowley, John Kerfoot, Ethan Handel, Mike Smith, Colin Evans

Don Barrick, Pete Lilleboe, Chad Whelan Belinda Lipa, Bill Rector, Jimmy Isaacson

University of Alaska – Fairbanks

Tom Weingarter, Hank Statscewich

Ocean Power Technologies -

Michael Lovellette, Dan Newton

Rutgers University – CODAR Ocean Sensors

Academic - Industry Partnership since 1998

27 Researchers @ 9 Institutions

Step 2 Association: TRACK OF MAAS TRADER and DOLPHIN

Surface Current Mapping Capability

25 MHz

Radar λ : 12 m Ocean λ : 6 m

Range: 30 km Resolution: 1 km

13 MHz

Radar λ : 23 m Ocean λ : 12 m

Range: 80 km Resolution: 3 km

05 MHz

Radar λ : 60m Ocean λ : 30 m

Range: 180 km Resolution: 6

km

HF Radar Alaska

update interval = 64 sec (Today : 16-Jan-2013)

Detection of Russian Navy Ship with HF Radar

- Russian navy ship was shadowing the Research Vessel Westward Wind during its research cruise
- The Russian navy ship was within the EEZ of the United States
- Photos of the navy ship were taken on August 27, 2014 from the Westward Wind
- Position data from the Westward Wind were taken from Chukchi Science page

Westward Wind

Russian Navy, Pribaltika

Russian Navy, Pribaltika

Location of Westward Wind

Detections by HF Radar at PTLY

14:00 -20:00 GMT

Detections by Radar at PTLY 20:00-

AIS at Time of Encounter with Russian Ship (08:38 am local)

2015 IEEE Radar Conference
"Out of Africa – always something new"
Sandton Convention Centre, Johannesburg
27 – 30 October 2015
www.radarconf15.org

